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Abstract: A theory where the gravitational field of a mass induces a gravitational field contribution from the cosmos is pre-
sented. In this theory, entities of both net positive and net negative energy come into existence throughout the cosmos with
a maximum lifetime in accordance with Heisenberg’s uncertainty principle. A model of the resulting contribution that these
entities make to the gravitational field is provided and is shown to lead to both the baryonic Tully–Fisher relationship and
the Pioneer anomaly.
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Résumé : Nous présentons une théorie où le champ gravitationnel d’une masse induit une contribution au champ gravita-
tionnel en provenance du cosmos. Dans cette théorie, des entités d’énergies nettes, positive et négative, surgissent à travers
le cosmos avec une durée de vie compatible avec le principe d’Heisenberg. Nous produisons un modèle des contributions
que font ces entités au champ gravitationnel et nous montrons qu’il mène autant à la relation Tully–Fisher baryonique qu’à
l’anomalie de Pioneer.

[Traduit par la Rédaction]

1. Introduction

Newton’s gravitational theory has been used for centuries
to predict the motion of objects within our solar system. In
Newton’s theory, the gravitational field, gM, at a distance r
from a given mass M points towards the mass and has a mag-
nitude given by

gM ¼ GM

r2
ð1Þ

where G is Newton’s gravitational constant. Newton’s theory
has been extremely successful, but over the years anomalies
have been observed. For example, observational data indi-
cated that the orbit of Uranus deviated from what was pre-
dicted by Newton’s theory. One possibility, considered at the
time, was that Newton’s theory breaks down at great dis-
tances from the Sun. However, the subsequent discovery of
Neptune accounted for this discrepancy and Newton’s gravi-
tational theory was put on even firmer footing. Another his-
torical example was the anomalous precession of the
perihelion of Mercury. Again, observational data indicated a
deviation from what was predicted by Newton’s gravitational
theory. However, in this case no additional planet was found
and Newton’s gravitational theory did indeed break down. A
new gravitational theory was required, Einstein’s general the-
ory of relativity, to explain the anomaly.
Currently, there are new anomalies that require explana-

tion. One of these, found within our own solar system, is re-
ferred to as the Pioneer anomaly as it stems from the analysis

of tracking data from the Pioneer 10 and 11 spacecrafts [1–
3]. These data have indicated the onset of an anomalous ac-
celeration of the spacecraft directed towards the Sun at a dis-
tance from 10 to 15 AU (1 AU = 1.495 978 70 × 1011 m).
From a distance of 15 AU to the limits of the data, approxi-
mately 50 AU from the Sun, this anomalous acceleration ap-
pears to be constant with a value of

aPIONEER ¼ ð8:74� 1:33Þ � 10�10 m s�2 ð2Þ
Over this distance the gravitational field of the Sun varies
from 2.6 × 10–5 m s–2 to 2.4 × 10–6 m s–2 so the effect is re-
latively small. For distances within 15 AU of the Sun, the un-
certainties in the data are large, but the results do seem to
indicate that the anomalous acceleration is not present within
the inner solar system (i.e., <10–15 AU from the Sun). This
agrees with planetary ephemerides and the results from the
Viking mission [2] and the Cassini mission [4], which indi-
cate that, at least within the inner solar system, no anomalous
acceleration seems to exist.
The Pioneer anomaly is a much more contentious anomaly

than those that were associated with the orbits of Uranus or
Mercury. Although attempts to explain the anomalous accel-
eration as a result of forces generated by the spacecrafts
themselves [3] have not yielded values of large enough mag-
nitude, much of the scientific community still does not accept
the Pioneer anomaly as pointing the way to new discoveries.
A second observation that disagrees with accepted gravita-

tional theory is that the orbital velocities of galaxies are
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found to be much greater than what is predicted. There are
two general characteristics of this anomaly. First, it is found
that the galactic orbital velocities do not fall off with increas-
ing distance as current gravitational theory predicts. But, re-
markably, as one moves further from the galactic center the
rotational velocity curves flatten out and the rotational veloc-
ity remains relatively constant. Secondly, there is a relation-
ship between this constant orbital velocity found at large r
and the total luminosity of the galaxy. This is called the
Tully–Fisher [5] relationship. By taking into account the gas
content of galaxies it has been shown [6] that this relation-
ship is fundamentally a relationship between v, the rotational
velocity of the galaxy, and M, the total baryonic mass of the
galaxy. This baryonic Tully–Fisher relationship is given by

M ¼ 35MSv
4 ð3Þ

where MS is the mass of the Sun, and v is in units of km s–1.
As an explanation for the larger than predicted galactic ro-

tational velocities, the assumption that the mass of galaxies
resides primarily in the observable luminous matter, namely
the stars, was brought into question [7]. A model of dark
matter has thereby arisen wherein it is currently believed that
the major contribution to the mass of a galaxy, and therefore
its gravitational field, are undetected nonbaryonic particles.
Other explanations for the observed orbital velocities of gal-
axies have been proposed. These include modified newtonian
dynamics (MOND), as proposed by Milgrom [8–12], which
postulates that the inertia of an object varies with accelera-
tion, and modified gravitation (MOG), as proposed by Moffat
[13–17].
One alternative to the dark matter theory, as proposed by

Blanchet [18–20], that is pertinent to the present paper is the
existence of a cosmic medium consisting of gravitational di-
poles that become polarized in a gravitational field. This
theory differs from both MOND and theories such as MOG
in that no modification of current gravitational theory or
newtonian dynamics is required. The polarized dipole me-
dium provides an additional contribution to the gravitational
field surrounding a given mass. This model is in some sense
similar to the dark matter model in that nonbaryonic par-
ticles, in this case gravitational dipoles, contribute to the
gravitational field of a given mass. However, a major differ-
ence between this polarized cosmic medium model and the
dark matter theory is that the field contribution of the gravi-
tational dipoles, unlike dark matter particles, is induced by
the gravitational field of a given mass.
The gravitational dipoles in Blanchet’s theory have been

modeled [18] as consisting of a pair of particles, one of pos-
itive gravitational mass and the other of negative gravitational
mass, with both particles having positive inertial mass. The
behavior of these gravitational dipoles in a gravitational field
is treated as being analogous to electric dipoles in an electric
field in that their dipole moments align with the gravitational
field. An unspecified internal force between the pair of par-
ticles that constitute the dipole is required to bind the dipole
together. This force is also required to balance the local grav-
itational field so that the dipole distribution about a given
mass is stable. The internal force, and therefore the dipole
moment, is modeled as either being dependent on the gravita-
tional field [18, 19] or on the polarization field [20]. The de-

pendence is such that the model leads to the baryonic Tully–
Fisher relationship.
Penner [21] considered the general case in which the grav-

itational field of a mass induces a gravitational contribution,
gA, from the surrounding vacuum. It was shown that, irre-
spective of the details of the model, the relationship between
the induced gravitational field and the total gravitational
field, g = gA + gM, can be expressed as

gA

g0
¼ g

g0
� k

g

g0

� �2

þO
g

g0

� �3
" #

ð4Þ

where k and g0 are constants. From (4), in the weak gravita-
tional field limit, Penner [21] then derived the following
equation:

M ¼ k

Gg0
v4 ð5Þ

which is in agreement with the baryonic Tully–Fisher rela-
tionship. In addition, it was shown that in the strong field
limit a value for gA would be obtained that is in reasonable
agreement with the observed Pioneer anomaly. Examples of
possible functions for gA(g) were presented, but Penner [21]
did not derive any specific relationship between gA and g.
Penner [21] also offered an alternative to Blanchet’s theory

on the manner in which the gravitational field of a mass may
induce a gravitational field from the vacuum. In Penner’s
model, entities of both net positive and net negative energy
continually come into existence in the vacuum with a maxi-
mum lifetime dictated by Heisenberg’s uncertainty principle.
Positive energy entities accelerate towards the given mass
during their lifetime, while negative energy entities accelerate
away. In this model each displaced entity is treated as equiv-
alent to an energy dipole. Unlike Blanchet’s model, these
positive and negative entities are not bound to each other
and no force is required to keep their distribution stable. The
finite lifetime of the entities in Penner’s model ensures a
time-independent distribution.
This paper is a continuation of Penner’s work [21]. A

model of the behaviour of the positive energy and negative
energy entities in a gravitational field will be presented and
the specific relationship between the resulting induced gravi-
tational field gA and the total gravitational field g will be de-
rived. The resulting relationship will be found to lead to both
the baryonic Tully–Fisher relationship and the Pioneer anom-
aly.

2. Model
In Penner [21] it is hypothesized that throughout the cos-

mos entities of both net positive energy and net negative en-
ergy continuously come into and out of existence. The
maximum lifetime, t, of these entities is given by the Heisen-
berg uncertainty principle

t ffi Z

2jEj ð6Þ

where E is the net energy of a given entity.
Given the preceding hypothesis, consider the effect that a

gravitational field will have on these entities. An entity of
net positive energy will during its lifetime be attracted to the
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source of the gravitational field. Similarly, an entity of net
negative energy will be repelled from the source. The behav-
iour of the vacuum in the vicinity of a mass is therefore anal-
ogous to some degree to the behaviour of a dielectric in the
vicinity of a charge. In the case of a dielectric in the presence
of a positive charge, negative charge within the dielectric will
shift towards the positive charge and concurrently positive
charge will shift away. Overall, the net charge of the dielec-
tric remains zero. The dielectric therefore becomes charge
polarized when placed in the vicinity of a charge. The charge
polarized dielectric creates an electric field that opposes the
electric field due to the charge and as a result the net electric
field surrounding a charge placed in a dielectric is reduced.
In the case of the vacuum surrounding a mass, positive en-
ergy entities within the vacuum will shift towards the mass
and concurrently negative energy entities will shift away
while the net energy of the vacuum remains zero. The vac-
uum thereby becomes energy polarized in the vicinity of a
mass. The energy polarized vacuum will contribute a gravita-
tional field that adds to the gravitational field of the mass
causing the net gravitational field surrounding a mass to be
increased.
This behaviour proposed for the net negative energy enti-

ties does require a modification to Newton’s second law. Spe-
cifically that mI, the inertia mass of an entity, needs to be
given by

mI ¼ jEj
c2

ð7Þ

where |E| is the magnitude of the total energy of the given
entity. The repulsive gravitational force exerted by the source
of the gravitational field on a net negative energy entity will
thereby result in the entity accelerating away from the source.
In Penner [21], it is shown that the resulting induced or

anomalous gravitational field (anomalous referring to the
gravitational field that is in addition to what current gravita-
tional theory predicts) due to the energy polarization of the
vacuum is given by

gA ¼ 4pG

c2
PE ð8Þ

where PE is the equivalent energy dipole moment density.
The equivalent energy dipole moment density will be given
by

PE ¼ NpEtE ð9Þ
where N is the rate per unit volume at which entities (both
positive energy and negative energy) come into existence, pE
is the equivalent energy dipole moment of a given entity, and
tE is the lifetime of a given entity. The lifetime of a given en-
tity, tE, will in general be less than t, its maximum possible
lifetime, as a result of interactions. The bar over pEtE and
over subsequent quantities represents an averaging over the
entities. It is hypothesized that these entities come into exis-
tence with zero velocity with respect to the gravitational field
and therefore with zero velocity with respect to the source of
the gravitational field. It is further hypothesized that these en-
tities come into existence as a pair with one of the entities
having a net energy of +E1 while the other has a net energy
of –E1. These two entities are taken to be unbound and there-

fore as a result of the gravitational field the +E1 entities will
accelerate towards the source of the gravitational field while
the –E1 entities will accelerate away. The equivalent energy
dipole moment for any given entity will therefore be given by

pE ¼ Ehxit ð10Þ
where E is the net energy of the entity, either ±E1, and 〈x〉t is
the time-averaged displacement of the entity due to the grav-
itational field. The equivalent energy dipole moment for a gi-
ven entity will point towards the source of the gravitational
field for entities of both positive energy and negative energy
(in this case E is negative and 〈x〉t points away from the
mass). The gravitational field due to the equivalent energy di-
poles, as given by (8), will therefore add to the gravitational
field of the mass and the magnitude of the total gravitational
field g surrounding a mass will be given by

g ¼ gM þ gA ð11Þ
The magnitude of the time-averaged displacement of an

entity over its lifetime will be given by

hxit ¼ 1

tE

ZtE
0

1

2
gt2

� �
dt ð12Þ

The value of the gravitational field that is used in (12) should
properly be the local gravitational field at the location of the
entity. The local gravitational field is equal to the total gravi-
tational field minus the contribution that the entity itself con-
tributes to the calculated value for g. An analogous
correction is required when calculating the electric field that
acts on an electric dipole within a dielectric [22]. However,
to simplify the derivation the local gravitational field will be
taken to be equal to the total gravitational field g at that loca-
tion. Integrating (12) then results in

hxit ¼ 1

3

1

2
gt2E

� �
ð13aÞ

hxit ¼ 1

3
xA ð13bÞ

where xA, the magnitude of the net displacement of an entity,
is given by

xA ¼ 1

2
gt2E ð14Þ

By (8), (9), (10), and (13b), the anomalous gravitational
field due to the entities can be expressed as

gA ¼ 4pG

3c2
NE1xAtE ð15Þ

Substituting for tE from (14) then leads to

gA ¼ 4pG

3c2
NE1

ffiffiffi
2

g

s
x3=2A ð16Þ

The value of x3=2A can be determined from the probability
function, P(x), for the distance travelled by an entity before
interacting with another entity. Irrespective of the details of
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the interaction this probability function P(x) will be given by
the Beer–Lambert law

PðxÞ ¼ me�mx ð17Þ
where m, the attenuation coefficient, is given by

m ¼ sni ð18Þ
where s is the cross section for the interaction and ni is the
number density of the entities (i.e., the number of entities
per unit volume) that can take part in an interaction. The at-
tenuation coefficient can also be expressed by

m ¼ 1

L
ð19Þ

where L is the mean free path length for the entities. To de-
termine ni it will be taken that N, the rate per unit volume at
which the entities come into existence, is constant and that
the only interaction that is of concern is when an entity of
energy +E1 interacts with an entity of –E1 resulting in the
disappearance of both entities. As such, the number density
of the entities that can take part in an interaction with an en-
tity of opposite energy will be given by

ni ¼ 1

2
NtE ð20Þ

and the attenuation coefficient, by (18), will thereby be

m ¼ 1

2
NstE ð21Þ

Using the Beer–Lambert law the average displacement of
an entity can be determined. If the distance travelled by a
given entity is solely dictated by how far it travels before an
interaction, the average displacement of an entity before it
would interact with an entity of opposite energy would be
given by

xA ¼
Z1
0

xPðxÞdx ð22aÞ

xA ¼ 1

m
¼ L ð22bÞ

as with any classical collision problem. However, given that
the maximum lifetime of a given entity is t, the maximum
possible displacement, a, of an entity will be given by

a ¼ 1

2
gt2 ð23Þ

The average displacement of such an entity would then be gi-
ven by

xA ¼
Za
0

xPðxÞdxþ a

Z1
a

PðxÞdx ð24Þ

where the integral in the second term is equal to the probabil-
ity that the entity does not interact with another entity before
a time t has passed. Evaluating the integrals of (24) results in

xA ¼ 1

m
1� e�ma
� � ð25Þ

For the case of the entities being displaced in a weak gravita-
tional field, ma ≪ 1, where the probability of an interaction
before a time t has passed is very low, (25) simplifies to

xA ¼ 1

m
½1� ð1� maþ . . .Þ� ¼ a ð26Þ

and the entities’ average displacement is determined by how
far the entities can travel in a time equal to their maximum
lifetime. For the case of the entities being displaced in a
strong gravitational field, ma ≫ 1, where the probability of
an interaction before a time t has passed is very high, (25)
simplifies to

xA ¼ 1

m
¼ L ð27Þ

and the entities average displacement is determined by their
mean free path length. The Beer–Lambert law does therefore
lead to the expected average displacement of the entities in
both a weak and a strong gravitational field.
In (16) it is the value of x3=2A that is wanted. This will be

given by

x3=2A ¼
Za
0

x3=2A PðxÞdxþ a3=2
Z1
a

PðxÞdx ð28aÞ

x3=2A ¼
ffiffiffi
a

p
m

3

2
ðg � e�amÞ ð28bÞ

where g is given by

g ¼
ffiffiffi
p

p
2

erf
ffiffiffiffiffiffi
am

p� �
ffiffiffiffiffiffi
am

p ð29Þ

Substituting (28b) into (16) then results in the following ex-
pression for the anomalous gravitational field:

gA ¼ 4pG

3c2
NE1

ffiffiffi
2

g

s ffiffiffi
a

p
m

3

2
ðg � e�amÞ ð30aÞ

gA ¼ 4pG

3c2
NE1

t

m

3

2
ðg � e�amÞ ð30bÞ

Equation (30b) can be further simplified by finding an ex-
pression for the attenuation coefficient, m. By (21) and (14),
the attenuation coefficient m can be expressed as

m ¼ 1

2
Ns

ffiffiffi
2

g

s
x1=2A ð31Þ

where

x1=2A ¼
Za
0

x1=2A PðxÞdxþ a1=2
Z1
a

PðxÞdx ð32aÞ
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x1=2A ¼
ffiffiffi
a

p
g ð32bÞ

Therefore, by (31) and (32b), the attenuation coefficient can
be expressed as

m ¼ 1

2
Nstg ð33Þ

By substituting (33), into (30b) the anomalous gravitational
field due to the entities can thereby be expressed as

gA ¼ 4pG

c2
E1

s
1� e�am

g

� �
ð34Þ

where a is given by (23), m is given by (33) and g is given
by (29). The variable a and therefore the variables g and m

are all functions of g. Therefore, (34) gives the relationship
between the anomalous gravitational field gA and the total
gravitational field g.
Equation (34) is a transcendental equation and therefore gA

cannot be expressed as an explicit function of g. However,
the relationship between gA and g as given by (34) can be
expressed as a series expansion. This can be shown as fol-
lows. Starting from the series expansions for the error and
exponential functions the following expansions can be de-
rived:

g ¼ 1� 1

3
ðamÞ þ 1

10
ðamÞ2 �O ðamÞ3	 
 ð35Þ

and

1� e�am

g

� �
¼ 2

3
ðamÞ � 4

15
ðamÞ2 þO ðamÞ3	 
� �

ð36Þ

In addition, by (33) and (35)

am ¼ 1

2
Nstag ð37aÞ

am ¼ ðam0Þ �
1

3
ðam0Þ2 þO ðam0Þ3

	 
 ð37bÞ

where

m0 ¼
1

2
Nst ð38Þ

is the attenuation coefficient in the weak field limit, that is,
setting tE in (21) equal to t. By substituting (37b) into (36)
and then (36) into (34), the following series expansion for
gA is obtained:

gA ¼ 8pG

3c2
E1

s
ðam0Þ �

3

5
ðam0Þ2 þO ðam0Þ3

	 
� �
ð39aÞ

gA ¼ 8pG

3c2
E1

s

g

g0

� �
� 3

5

g

g0

� �2

þO
g

g0

� �3
" #( )

ð39bÞ

where the constant g0, with units of m s–2, is defined as

g0 ¼ 2

m0t
2

ð40Þ

In the far field of galaxies, where g ≪ g0, the observed ga-

lactic rotational curves would indicate that the induced gravi-
tational field is the dominant contributor to the total
gravitational field. Therefore, for g ≪ g0, the anomalous
gravitational field gA → g. In this limit it then follows from
(39b) that

g0 ¼ 8pG

3c2
E1

s
ð41Þ

By substituting (41) into (39b) the following second order
weak field approximation for the dependence that gA has on
g is then found:

gA

g0
ffi g

g0
� 3

5

g

g0

� �2

ð42Þ

Equation (42) is of the form of (4) and as is shown in Penner
[21] a functional dependence of this form leads to the baryo-
nic Tully–Fisher relationship.
To derive the baryonic Tully–Fisher relationship from (42)

the substitution of g = gM + gA into the first order term of
(42) is made, resulting in

gA

g0
ffi gA

g0
þ gM

g0
� 3

5

g

g0

� �2

ð43Þ

which then simplifies to

gM ffi 3

5

g2

g0
ð44Þ

Then by substituting for gM from (1) and equating the total
gravitational field g to the centripetal acceleration of an orbit-
ing mass (i.e., v2/r) the following relationship is found be-
tween the baryonic mass of a given galaxy and the weak or
far field value for the orbiting speed of the stars:

M ¼ 3

5Gg0
v4 ð45Þ

Equation (45) is in agreement with the baryonic Tully–Fisher
relationship. The hypotheses and the model presented in this
paper leads therefore to the baryonic Tully–Fisher relation-
ship. The details of the model and the approximations used
will not affect this result. As discussed in Penner [21], if a
gravitational field induces a contribution from the cosmos
then in general gA is a function of g and can be expanded in
a form as per (39b). This in turn leads to (44), which results
in the dependence between M and v as given by the baryonic
Tully–Fisher relationship.
The value for the constant g0 in (45) can be determined by

equating the coefficient of (45) to the coefficient of the ob-
served baryonic Tully–Fisher relationship, (3). The resulting
value for g0 is

g0 ¼ 1:29� 10�10 m s�2 ð46Þ
In a strong gravitational field where g ≫ g0 and am ≫ 1,
(34) and (41) indicate then that gA approaches a constant va-
lue of

gA ¼ 4pG

c2
E1

s
ð47aÞ
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gA ¼ 3

2
g0 ð47bÞ

Therefore, in the strong field realm of the Pioneer anomaly,
by (46) and (47b), gA is approximately constant with a value
of

gA ¼ 1:94� 10�10 m s�2 ð48Þ
Although this value is smaller than the observed value for the
Pioneer anomaly, as given by (2), it is still encouragingly
close. This is especially so given that the range of g being
considered in going from the realm of the baryonic Tully–
Fisher relationship to the realm of the Pioneer anomaly is
over five orders of magnitude.
To explain the difference between the models’ value, (48),

and the observed value for the Pioneer anomaly, (2), the as-
sumption that entities exist only with energies ±E1 needs to
be reconsidered. Consider the possibility that entities of both
energies ±E1 and ±E2 exist. To keep things relatively simple,
it will be taken that N, the rate at which entities come into
existence per unit volume, and s, the cross section for the in-
teractions, are the same for both the ±E1 entities and the ±E2
entities. Also only the interactions between entities of equal
and opposite energy are of concern, that is, interactions that
result in the removal of the entities. As such the contribution
of the ±E1 entities and the ±E2 entities are independent of
each other and the net anomalous gravitational field will be
given by

gA ¼ gA1 þ gA2 ð49Þ
where by (34)

gA1 ¼ 4pG

c2
E1

s
1� e�a1m1

g1

� �
ð50aÞ

and

gA2 ¼ 4pG

c2
E2

s
1� e�a2m2

g2

� �
ð50bÞ

In the weak field approximation, (50a) and (50b) can be
shown to simplify to

gA1 ffi E2
2

E2
1 þ E2

2

gA ð51aÞ

and

gA2 ffi E2
1

E2
1 þ E2

2

gA ð51bÞ

respectively. Consider now as an example the case where
E2 = 3.5E1. For this example, (51a) and (51b) result in

gA1 ffi 12:25

13:25
gA ð52aÞ

and

gA2 ffi 1

13:25
gA ð52bÞ

Therefore, in the weak field limit where the baryonic Tully–
Fisher relationship holds, the contribution to gA provided by

the ±E1 entities will dominate. The second order coefficient
in (42) will remain at approximately 3/5 and the value for g0
will stay at approximately the value as given by (46).
In a strong field, am ≫ 1, (50a) and (50b) simplify to

gA1 ¼ 4pG

c2
E1

s
¼ 3

2
g0 ð53aÞ

and

gA2 ¼ 4pG

c2
E2

s
¼ E2

E1

3

2
g0

� �
ð53bÞ

respectively. Therefore, in the strong field limit, where the
Pioneer anomaly holds, the contribution to gA by the ±E2 en-
tities will dominate. For the example with E2 = 3.5E1 the
contribution due to the higher energy entities will be 3.5
times greater than the contribution due to the lower energy
entities, and the value of gA will approach

gA ¼ 3

2
g0 þ 3:5

3

2
g0

� �
¼ 6:75g0 ð54aÞ

gA ¼ 8:71� 10�10 m s�2 ð54bÞ
The example provided, with E2 = 3.5E1 and N being the
same for both the ±E1 and the ±E2 entities, does therefore
lead to agreement with both the baryonic Tully–Fisher rela-
tionship and the observed value of the Pioneer anomaly.
However, this is to be taken as no more than an example.
Other distributions of the possible entities energy values
could also be found to agree with the observations. In gen-
eral, as demonstrated by the example, if more than one entity
energy exists, the strong field value will exceed the value gi-
ven by (48).
From the model presented some of the details of the enti-

ties can be determined. Expressing the interaction cross sec-
tion s as equal to pr02, where r0 is the range of the
interaction, the following inequality would be expected to
hold:

Nt <
4

3
pr30

� ��1

ð55Þ

where Nt is the maximum entity density, that is, the density
of entities in the weak field limit. Equation (55) basically
states that the average separation of the entities is greater
than their interaction range. Equations (55), (38), (40), (41),
and (6) along with the value of g0 as given by (46) then lead
to the following inequalities:

r0 < 2:8� 10�23 m ð56aÞ

s < 2:4� 10�45 m2 ð56bÞ

E1 < 4:9� 10�29 J ð56cÞ
and

t1 > 1:1� 10�6 s ð56dÞ
In Penner [21] it was conjectured that the entities were bound
particle–antiparticle pairs. From (56b) it is seen that the spec-
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ulation given by the author in ref. 21 on the nature of the en-
tities must be incorrect. Given the cross section for the inter-
action, (56b), the entities would appear to be single
uncharged particles that must only interact via the weak
force. At this time no further speculation will be offered re-
garding the nature of these entities.

3. Conclusion
The theory of induced gravitational contribution from the

cosmos that is presented in this paper leads to both the bar-
yonic Tully–Fisher relationship and the Pioneer anomaly.
This theory ties the two gravitational anomalies to each other,
with the coefficient of the baryonic Tully–Fisher relationship
determining the constant value that gA approaches in a strong
gravitational field. The approximations and simplifications
presented are substantial. However, given that the baryonic
Tully–Fisher relationship and the Pioneer anomaly do fall
out naturally from the proposed theory it would seem that
this theory is pointing in the right direction.
An issue that needs to be addressed is why the value of the

observed Pioneer anomaly drops towards zero as one ap-
proaches the Sun. The rapid rate at which it drops may be a
clue. One physical property that rapidly changes with dis-
tance from the Sun is the energy density of the solar mag-
netic field. The energy density of the magnetic field of a
magnetic dipole, such as the Sun’s, drops off with distance
as r–6. The solar magnetic field density therefore increases
by a factor of 64 as the distance from the Sun is reduced
from 20 to 10 AU. If an electromagnetic field inhibits the
coming into existence of the proposed entities of the model,
reduces the lifetime of the entities or reduces the amount of
their displacement, then a rapid drop in the value of gA as
the Sun is approached would be expected. Interestingly, if
the solar magnetic field is responsible for a reduction in the
value for gA then it would be expected that the value of gA
within our solar system would not only vary with the dis-
tance from the Sun but also with the orientation with respect
to the solar magnetic field. However, more work is required
to explain why the Pioneer anomaly drops rapidly to zero
within the inner solar system.
In the model presented in this paper, the positive net en-

ergy entities shift towards a gravitational source while the
negative entities shift away, with the result that the energy
density of the vacuum surrounding a given mass is positive.
A positive energy density corresponds to having more posi-
tive energy entities than negative energy entities within a
given volume. If only a single gravitational source is present
and the cosmos is bounded then, as with the analogous case
of a dielectric with an embedded charge, the bounding sur-
face would have a net negative energy and overall the interior
vacuum and the bounding surface would have a net energy of
zero. Of course, the Universe does not have a bounding sur-
face and multiple gravitational sources are present. There
then must be regions where the vacuum energy density is
positive, that is, in the regions surrounding masses and re-
gions where the vacuum energy density is negative. It is
speculated that the regions where the vacuum energy density
is negative correspond to the voids between galactic clusters.

If this is the case, then these voids with their net negative en-
ergy would be expected to repel mass. Therefore, while on
the one hand the energy polarization of the vacuum leads to
stronger gravitational fields surrounding matter and thereby
leads to greater and faster accumulations of mass, on the
other hand the energy polarization of the vacuum also leads
to these accumulations of mass being repelled away from the
voids and thereby away from each other. How this may be
related to the observed acceleration of galactic clusters away
from each other, which is currently explained by the concept
of dark energy, will not be speculated on at this time.
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